Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 36(4): 899-918, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38142228

RESUMO

Salinity stress constrains lateral root (LR) growth and severely affects plant growth. Auxin signaling regulates LR formation, but the molecular mechanism by which salinity affects root auxin signaling and whether salt induces other pathways that regulate LR development remains unknown. In Arabidopsis thaliana, the auxin-regulated transcription factor LATERAL ORGAN BOUNDARY DOMAIN 16 (LBD16) is an essential player in LR development under control conditions. Here, we show that under high-salt conditions, an alternative pathway regulates LBD16 expression. Salt represses auxin signaling but, in parallel, activates ZINC FINGER OF ARABIDOPSIS THALIANA 6 (ZAT6), a transcriptional activator of LBD16. ZAT6 activates LBD16 expression, thus contributing to downstream cell wall remodeling and promoting LR development under high-salt conditions. Our study thus shows that the integration of auxin-dependent repressive and salt-activated auxin-independent pathways converging on LBD16 modulates root branching under high-salt conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Salinidade , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Environ ; 46(7): 2174-2186, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36912402

RESUMO

The root system architecture of a plant changes during salt stress exposure. Different accessions of Arabidopsis thaliana have adopted different strategies in remodelling their root architecture during salt stress. Salt induces a multiphase growth response in roots, consisting of a stop phase, quiescent phase, recovery phase and eventually a new level of homoeostasis. We explored natural variation in the length of and growth rate during these phases in both main and lateral roots and find that some accessions lack the quiescent phase. Using mathematical models and correlation-based network, allowed us to correlate dynamic traits to overall root architecture and discover that both the main root growth rate during homoeostasis and lateral root appearance are the strongest determinants of overall root architecture. In addition, this approach revealed a trade-off between investing in main or lateral root length during salt stress. By studying natural variation in high-resolution temporal root growth using mathematical modelling, we gained new insights in the interactions between dynamic root growth traits and we identified key traits that modulate overall root architecture during salt stress.


Assuntos
Arabidopsis , Raízes de Plantas , Arabidopsis/fisiologia , Estresse Salino , Fenótipo
3.
Plant Physiol ; 182(1): 361-377, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570508

RESUMO

SNF1-RELATED PROTEIN KINASES 2 (SnRK2) are important components of early osmotic and salt stress signaling pathways in plants. The Arabidopsis (Arabidopsis thaliana) SnRK2 family comprises the abscisic acid (ABA)-activated protein kinases SnRK2.2, SnRK2.3, SnRK2.6, SnRK2.7, and SnRK2.8, and the ABA-independent subclass 1 protein kinases SnRK2.1, SnRK2.4, SnRK2.5, SnRK2.9, and SnRK2.10. ABA-independent SnRK2s act at the posttranscriptional level via phosphorylation of VARICOSE (VCS), a member of the mRNA decapping complex, that catalyzes the first step of 5'mRNA decay. Here, we identified VCS and VARICOSE RELATED (VCR) as interactors and phosphorylation targets of SnRK2.5, SnRK2.6, and SnRK2.10. All three protein kinases phosphorylated Ser-645 and Ser-1156 of VCS, whereas SnRK2.6 and SnRK2.10 also phosphorylated VCS Ser-692 and Ser-680 of VCR. We showed that subclass 1 SnRK2s, VCS, and 5' EXORIBONUCLEASE 4 (XRN4) are involved in regulating root growth under control conditions as well as modulating root system architecture in response to salt stress. Our results suggest interesting patterns of redundancy within subclass 1 SnRK2 protein kinases, with SnRK2.1, SnRK2.5, and SnRK2.9 controlling root growth under nonstress conditions and SnRK2.4 and SnRK2.10 acting mostly in response to salinity. We propose that subclass 1 SnRK2s function in root development under salt stress by affecting the transcript levels of aquaporins, as well as CYP79B2, an enzyme involved in auxin biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , RNA Mensageiro/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Sais/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Plant Cell Environ ; 43(1): 143-158, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430837

RESUMO

Endocytosis and relocalization of auxin carriers represent important mechanisms for adaptive plant growth and developmental responses. Both root gravitropism and halotropism have been shown to be dependent on relocalization of auxin transporters. Following their homology to mammalian phospholipase Ds (PLDs), plant PLDζ-type enzymes are likely candidates to regulate auxin carrier endocytosis. We investigated root tropic responses for an Arabidopsis pldζ1-KO mutant and its effect on the dynamics of two auxin transporters during salt stress, that is, PIN2 and AUX1. We found altered root growth and halotropic and gravitropic responses in the absence of PLDζ1 and report a role for PLDζ1 in the polar localization of PIN2. Additionally, irrespective of the genetic background, salt stress induced changes in AUX1 polarity. Utilizing our previous computational model, we found that these novel salt-induced AUX1 changes contribute to halotropic auxin asymmetry. We also report the formation of "osmotic stress-induced membrane structures." These large membrane structures are formed at the plasma membrane shortly after NaCl or sorbitol treatment and have a prolonged presence in a pldζ1 mutant. Taken together, these results show a crucial role for PLDζ1 in both ionic and osmotic stress-induced auxin carrier dynamics during salt stress.


Assuntos
Transporte Biológico , Ácidos Indolacéticos/metabolismo , Fosfolipases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Endocitose , Regulação da Expressão Gênica de Plantas , Gravitropismo , Microscopia Confocal , Fosfolipases/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Salino
5.
iScience ; 21: 458-473, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31707259

RESUMO

Salinity is a devastating abiotic stress accounting for major crop losses yearly. Plant roots can strikingly grow away from high-salt patches. This response is termed halotropism and occurs through auxin redistribution in roots in response to a salt gradient. Here, a natural variation screen for the early and NaCl-specific halotropic response of 333 Arabidopsis accessions revealed quantitative differences in the first 24 h. These data were successfully used to identify genetic components associated with the response through Genome-Wide Association Study (GWAS). Follow-up characterization of knockout mutants in Col-0 background confirmed the role of transcription factor WRKY25, cation-proton exchanger CHX13, and a gene of unknown function DOB1 (Double Bending 1) in halotropism. In chx13 and dob1 mutants, ion accumulation and shoot biomass under salt stress were also affected. Thus, our GWAS has identified genetic components contributing to main root halotropism that provide insight into the genetic architecture underlying plant salt responses.

6.
Plant Physiol ; 177(4): 1410-1424, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29907701

RESUMO

Freezing limits plant growth and crop productivity, and plant species in temperate zones have the capacity to develop freezing tolerance through complex modulation of gene expression affecting various aspects of metabolism and physiology. While many components of freezing tolerance have been identified in model species under controlled laboratory conditions, little is known about the mechanisms that impart freezing tolerance in natural populations of wild species. Here, we performed a quantitative trait locus (QTL) study of acclimated freezing tolerance in seedlings of Boechera stricta, a highly adapted relative of Arabidopsis (Arabidopsis thaliana) native to the Rocky Mountains. A single QTL was identified that contained the gene encoding ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (BstDGAT1), whose expression is highly cold responsive. The primary metabolic enzyme DGAT1 catalyzes the final step in assembly of triacylglycerol (TAG) by acyl transfer from acyl-CoA to diacylglycerol. Freezing tolerant plants showed higher DGAT1 expression during cold acclimation than more sensitive plants, and this resulted in increased accumulation of TAG in response to subsequent freezing. Levels of oligogalactolipids that are produced by SFR2 (SENSITIVE TO FREEZING2), an indispensable element of freezing tolerance in Arabidopsis, were also higher in freezing-tolerant plants. Furthermore, overexpression of AtDGAT1 led to increased freezing tolerance. We propose that DGAT1 confers freezing tolerance in plants by supporting SFR2-mediated remodeling of chloroplast membranes.


Assuntos
Brassicaceae/fisiologia , Resposta ao Choque Frio/fisiologia , Diacilglicerol O-Aciltransferase/genética , Proteínas de Plantas/genética , Aclimatação , Proteínas de Arabidopsis/genética , Brassicaceae/genética , Resposta ao Choque Frio/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ecótipo , Congelamento , Regulação da Expressão Gênica de Plantas/fisiologia , Fosfatidilcolinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Plântula/genética , Plântula/fisiologia , Triglicerídeos/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...